Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
PLoS One ; 19(3): e0299687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512973

RESUMO

Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1ß, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Physalis , Ribes , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ésteres/metabolismo , Sacarose/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/patologia , Ácido Trinitrobenzenossulfônico/toxicidade
2.
Life Sci ; 334: 122189, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865178

RESUMO

AIMS: Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS: We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS: We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-ß1 (TGF-ß1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE: Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Colite/induzido quimicamente , Colite/terapia , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/terapia , Linfócitos T Reguladores , Imunidade , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Modelos Animais de Doenças
3.
Eur J Gastroenterol Hepatol ; 35(8): 854-864, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37395238

RESUMO

OBJECTIVE: This study aimed to investigate the effect of oleracein E (OE) in improving 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC). METHODS: Lipopolysaccharide (LPS) was used to induce a UC cell model, and TNBS was used to induce a UC rat model. ELISA was performed to assess the levels of inflammatory factors (IL-1ß, TNF-α, and IL-6). Moreover, the activities of catalase (CAT), myeloperoxidase (MPO), and malonaldehyde (MDA) were detected by kits. Western blotting was performed to assess related proteins of the Nrf2/HO-1 signaling pathway, tight junction protein (ZO-1, Occludin, and claudin-2) expression levels, and apoptosis-related proteins (Bcl2, Bax, and cleaved caspase 3). Flow cytometry was used to analyze ROS levels. The morphology of colon tissues and the apoptosis of cells were detected by HE and TUNEL staining, respectively. RESULTS: OE significantly increased the activity of CAT and decreased the activity of MPO in LPS-induced Caco-2 cells and TNBS-induced UC rats. However, the levels of IL-1ß, IL-6, and TNF-α were markedly reduced both in vivo and in vitro. In addition, OE significantly increased the levels of Nrf2/HO-1 signaling pathway-related proteins and tight junction proteins and inhibited cell apoptosis. HE staining showed that OE significantly decreased the severity of acute TNBS-induced colitis in rats. CONCLUSION: OE may exert a regulatory effect on ameliorating intestinal barrier injury and reducing inflammation and oxidative stress levels by activating the Nrf2/HO-1 pathway.


Assuntos
Colite Ulcerativa , Colite , Ratos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Ácido Trinitrobenzenossulfônico/toxicidade , Células CACO-2 , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2
4.
J Ethnopharmacol ; 309: 116301, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36842724

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yiyi Fuzi Baijiang formula (YFB) is a traditional Chinese medicine prescription composed of Coix seed, Radix Aconiti Lateralis and Patrinia villosa, which has been used to treat ulcerative colitis (UC) for thousands of years. AIM OF THE STUDY: To investigate the therapeutic effect and metabolic analysis of YFB formula on UC in rats induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS). MATERIALS AND METHODS: Six main alkaloids in the YFB formula were determined by UPLC‒MS/MS. The rat UC model was induced by TNBS, and the therapeutic effect of YFB formula on UC was evaluated by disease activity index (DAI) score and hematoxylin-eosin (HE) staining. UPLC-QTRAP-MS metabolomics technology was used to screen potential biomarkers for YFB treatment of UC in combination with multivariate data statistics and further analyze related metabolic pathways. Western blotting was used to detect the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in rat liver tissues. ELISA and immunohistochemistry were used to detect the contents of interleukin (IL)-17A, IL-21, IL-22, IL-6, TNF-α, IL-1ß and IL-18 in rat serum and liver tissues. RESULTS: The DAI scores of the YFB groups were significantly reduced, and colon tissue injury was significantly improved (p < 0.01). The results of metabolomics analysis revealed 29 potential biomarkers in serum and 27 potential biomarkers in liver. YFB formula can treat UC by affecting glycerophospholipid metabolism, primary bile acid biosynthesis, glyoxylic acid and dicarboxylic acid metabolism, and arginine and proline metabolism. Compared with the model group, the contents of IL-17A, IL-21, IL-22, IL-6, TNF-α, IL-1ß and IL-18 in the YFB groups were decreased in a dose-dependent manner (p < 0.01). Compared with those in the model group, the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in the YFB groups were significantly decreased in a dose-dependent manner (p < 0.01). CONCLUSIONS: The therapeutic effect of YFB formula on UC rats was dose dependent, and the effect of the YFB (2.046 g/kg) group was close to that of the positive group. YFB formula has an anti-inflammatory effect on UC by regulating the balance of Th17/Treg cells in rats.


Assuntos
Colite Ulcerativa , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Interleucina-18/efeitos adversos , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia , Linfócitos T Reguladores , Ácido Trinitrobenzenossulfônico/toxicidade , Cromatografia Líquida , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espectrometria de Massas em Tandem , Colo , Biomarcadores , Caspases , Modelos Animais de Doenças
5.
Immunopharmacol Immunotoxicol ; 45(2): 172-184, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36154797

RESUMO

OBJECTIVE: The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupt the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (ILs), and reactive oxygen species (ROS) provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats. MATERIALS AND METHODS: Standard and test drugs were given orally for 5 d to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury, and score. Inflammatory biomarkers IL-1ß, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. RESULTS: Combination of D-GLU + 5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR (p < 0.001) and colon/body weight ratio (p < 0.001), restored the colonic architecture and suppressed the histopathological score (p < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers (p < 0.001) and MDA (p < 0.001) while enhancing GSH level (p < 0.001). CONCLUSION: In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Ácido Trinitrobenzenossulfônico/toxicidade , Ratos Wistar , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colo/patologia , Mesalamina/efeitos adversos , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Anti-Inflamatórios/farmacologia , Suplementos Nutricionais , Glucosamina/efeitos adversos , Glutationa/farmacologia , Peso Corporal
6.
Turk J Gastroenterol ; 34(3): 196-202, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511608

RESUMO

BACKGROUND: It was aimed to induce a new experimental colitis model by using acetic acid and trinitrobenzene sulphonic acid together and to investigate the severity of inflammation biochemically and histopathologically in comparison with other models. METHODS: Fifty-six Wistar albino male rats were randomly divided into 4 groups as control, acetic acid, trinitrobenzene sulphonic acid, and combined groups, and the animals were sacrificed following the induction of colitis on the third day and on the seventh day. The serum amyloid A and myeloperoxidase were tested in plasma samples, and the tumor necrosis factor-alpha, interleukin 33, and ST2 were assayed in colon tissue samples with enzyme-linked immunosorbent assay in addition to histopathological examination. RESULTS: There were statistically significant differences between the combined and the control groups both on the third day and on the seventh day in all parameters. There was no difference between the acetic acid group on the seventh day and the control groups in biochemical parameters. CONCLUSIONS: The acetic acid model forms acute colitis. The combined model is found to be more successful in forming inflammation when compared to other models.


Assuntos
Colite , Colo , Ratos , Animais , Ratos Wistar , Colo/patologia , Ácido Acético/toxicidade , Ácido Trinitrobenzenossulfônico/toxicidade , Colite/induzido quimicamente , Colite/patologia , Fator de Necrose Tumoral alfa , Inflamação/patologia , Peroxidase
7.
Food Funct ; 14(1): 181-194, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477762

RESUMO

Probiotics have been evaluated as alternative approaches for preventing the relapse of Crohn's disease (CD). Previously, we observed strain-specific anti-inflammatory properties of Bifidobacterium bifidum in 2,4,6-trinitrobenzene sulfonic acid (TNBS) acute colitis models. In this study, we further assessed the effects of several B. bifidum strains on colonic damage, fibrosis, inflammatory factors, intestinal microbial and metabolic profiles, and peripheral regulatory T cells (Tregs) in the context of TNBS chronic colitis in mice. These results indicated that B. bifidum FJSWX19M5, but not FXJWS17M4, ameliorated body weight loss, reduced colonic shortening and injury, decreased markers of gut inflammation, and rebalanced colonic metabolism in TNBS-treated mice. FJSWX19M5 supplementation also promoted Treg cell differentiation and intestinal barrier restoration compared to other strains. All living B. bifidum strains (FJSWX19M5, FXJWS17M4 and FHENJZ3M6) seemed to restore the disruption of the gut microbiota caused by TNBS. The co-culture of B. bifidum strains and mesenteric lymph node cells from TNBS-treated mice showed that those strains with anti-colitis could induce higher IL-10 levels and a lower ratio of IL-22/IL-10 and IL-17/IL-10 when compared to those strains that were not protective. Furthermore, heat-killed FJSWX19M5 exhibited a relief effect on colitis-related symptoms (including body weight loss, colonic shortening and injury). These data imply that specific B. bifidum strains or their lysates may be the current therapeutic alternatives for CD.


Assuntos
Bifidobacterium bifidum , Colite , Doença de Crohn , Animais , Camundongos , Linfócitos T Reguladores , Interleucina-10/genética , Interleucina-10/metabolismo , Bifidobacterium bifidum/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Citocinas/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Redução de Peso , Modelos Animais de Doenças
8.
Nutrients ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36364715

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the digestive tract and is typically accompanied by characteristic symptoms, such as abdominal pain, diarrhea, and bloody stool, severely deteriorating the quality of the patient's life. Electrolyzed hydrogen water (EHW) has been shown to alleviate inflammation in several diseases, such as renal disease and polymyositis/dermatomyositis. To investigate whether and how daily EHW consumption alleviates abdominal pain, the most common symptom of IBD, we examined the antioxidative and anti-inflammatory effects of EHW in an IBD rat model, wherein colonic inflammation was induced by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). We found that EHW significantly alleviated TNBS-induced abdominal pain and tissue inflammation. Moreover, the production of proinflammatory cytokines in inflamed colon tissue was also decreased significantly. Meanwhile, the overproduction of reactive oxygen species (ROS), which is intricately involved in intestinal inflammation, was significantly suppressed by EHW. Additionally, expression of S100A9, an inflammatory biomarker of IBD, was significantly suppressed by EHW. These results suggest that the EHW prevented the overproduction of ROS due to its powerful free-radical scavenging ability and blocked the crosstalk between oxidative stress and inflammation, thereby suppressing colonic inflammation and alleviating abdominal pain.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Hidrogênio/farmacologia , Hidrogênio/metabolismo , Água/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colo/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Inflamação/metabolismo , Dor Abdominal/etiologia , Colite/induzido quimicamente , Colite/metabolismo
9.
Front Cell Infect Microbiol ; 12: 1028899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304936

RESUMO

Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-ß1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.


Assuntos
Colite , Schistosoma japonicum , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Células Th17 , Linfócitos T Reguladores , Colite/induzido quimicamente , Colite/prevenção & controle , Metabolismo dos Lipídeos , Glicolipídeos
10.
Biotechnol Lett ; 44(11): 1263-1275, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261682

RESUMO

OBJECTIVES: Bone marrow-derived mesenchymal stem cells (BMSCs) show promise in treating inflammatory bowel disease. We tested if BMSCs improve Trinitro-benzene-sulfonic acid (TNBS)-induced colitis by inducing Treg differentiation by modulating programmed cell death 1 ligand 1(PD-L1). RESULTS: BMSCs were isolated and transfected with PD-L1 siRNA. Sprague-Dawley rats were randomly divided into 4 groups: normal, model, BMSC control, and PD-L1 siRNA BMSC. Colitis was induced by TNBS, except in the normal group. On d4, the BMSC control and PD-L1 siRNA BMSC groups were intravenously injected with BMSCs at a dose of 5 × 106 cells in phosphate-buffered saline (PBS; volume matched). BMSCs were later verified to have reached the colon tissue. BMSC control showed significantly better clinical symptoms and reduced histopathological colitis severity; PD-L1 siRNA BMSC group showed no difference. PD-L1 siRNA reduced: spleen and mesenteric lymph node Tregs, PD-L1, interleukin-10 (IL10), phosphate and tension homology deleted on chromosome ten (PTEN); colon p-Akt and p-mTOR were increased. CONCLUSIONS: We found that BMSCs can induce Treg differentiation by inhibiting the Akt/mTOR pathway via PD-L1; this significantly improved symptoms and pathology in our ulcerative colitis rat models.


Assuntos
Colite , Transplante de Células-Tronco Mesenquimais , Ratos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Antígeno B7-H1/genética , Linfócitos T Reguladores , RNA Interferente Pequeno , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Colite/induzido quimicamente , Colite/terapia , Serina-Treonina Quinases TOR , Fosfatos/efeitos adversos , Células da Medula Óssea , Diferenciação Celular
11.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012618

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Doença Crônica , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Camundongos , Ácido Trinitrobenzenossulfônico/toxicidade
12.
J Crohns Colitis ; 16(11): 1751-1761, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35833587

RESUMO

BACKGROUND AND AIMS: Intestinal fibrosis is a common complication of inflammatory bowel diseases. Medical treatment of intestinal fibrosis is an unmet therapeutic need. CD147 overexpression can induce myofibroblast differentiation associated with extracellular matrix deposition, favouring the development of fibrosis. To understand whether CD147 may promote intestinal fibrosis, we analysed its expression and blocked its function by using its specific inhibitor AC-73 [3-{2-[([1,1'-biphenyl]-4-ylmethyl) amino]-1-hydroxyethyl} phenol] in the murine TNBS [trinitrobenzenesulfonic acid]-chronic colitis model associated with intestinal fibrosis. METHODS: TNBS chronic colitis was induced by weekly intrarectal administration of escalating doses of TNBS. Ethanol-treated and untreated mice were used as controls. Separated groups of TNBS, ethanol-treated or untreated mice received AC-73 or vehicle administered intraperitoneally from day 21 to day 49. At day 49, mice were killed, and colons collected for histological analysis, protein and RNA extraction. CD147, α-SMA and activated TGF-ß1 protein levels, CD147/ERK/STAT3 signalling pathway and autophagy were assessed by Western blot, collagen and inflammatory/fibrogenic cytokines mRNA tissue content by quantitative PCR. RESULTS: In mice with chronic TNBS colitis, CD147 protein level increased during fibrosis development in colonic tissue, as compared to control mice. CD147 inhibition by AC-73 treatment reduced intestinal fibrosis, collagen and cytokine mRNA tissue content, without significant modulation of activated TGF-ß1 protein tissue content. AC-73 inhibited CD147/ERK1/2 and STAT3 signalling pathway activation and induced autophagy. CONCLUSIONS: CD147 is a potential new target for controlling intestinal fibrosis and its inhibitor, AC-73, might represent a potential new anti-fibrotic therapeutic option in IBD.


Assuntos
Basigina , Colite , Fenóis , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Autofagia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colágeno/metabolismo , Colo/patologia , Modelos Animais de Doenças , Etanol , Fibrose , Fenóis/farmacologia , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Basigina/antagonistas & inibidores
13.
Cell Mol Gastroenterol Hepatol ; 14(4): 841-876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840034

RESUMO

BACKGROUND & AIMS: More than half of Crohn's disease patients develop intestinal fibrosis-induced intestinal strictures. Elafin is a human protease inhibitor that is down-regulated in the stricturing intestine of Crohn's disease patients. We investigated the efficacy of elafin in reversing intestinal fibrosis and elucidated its mechanism of action. METHODS: We developed a new method to mimic a stricturing Crohn's disease environment and induce fibrogenesis using stricturing Crohn's disease patient-derived serum exosomes to condition fresh human intestinal tissues and primary stricturing Crohn's disease patient-derived intestinal fibroblasts. Three mouse models of intestinal fibrosis, including SAMP1/YitFc mice, Salmonella-infected mice, and trinitrobenzene sulfonic acid-treated mice, were also studied. Elafin-Eudragit FS30D formulation and elafin-overexpressing construct and lentivirus were used. RESULTS: Elafin reversed collagen synthesis in human intestinal tissues and fibroblasts pretreated with Crohn's disease patient-derived serum exosomes. Proteome arrays identified cathepsin S as a novel fibroblast-derived pro-fibrogenic protease. Elafin directly suppressed cathepsin S activity to inhibit protease-activated receptor 2 activity and Zinc finger E-box-binding homeobox 1 expression, leading to reduced collagen expression in intestinal fibroblasts. Elafin overexpression reversed ileal fibrosis in SAMP1/YitFc mice, cecal fibrosis in Salmonella-infected mice, and colonic fibrosis in trinitrobenzene sulfonic acid-treated mice. Cathepsin S, protease-activated receptor 2 agonist, and zinc finger E-box-binding homeobox 1 overexpression abolished the anti-fibrogenic effect of elafin in fibroblasts and all 3 mouse models of intestinal fibrosis. Oral elafin-Eudragit FS30D treatment abolished colonic fibrosis in trinitrobenzene sulfonic acid-treated mice. CONCLUSIONS: Elafin suppresses collagen synthesis in intestinal fibroblasts via cathepsin S-dependent protease-activated receptor 2 inhibition and decreases zinc finger E-box-binding homeobox 1 expression. The reduced collagen synthesis leads to the reversal of intestinal fibrosis. Thus, modified elafin may be a therapeutic approach for intestinal fibrosis.


Assuntos
Doença de Crohn , Obstrução Intestinal , Animais , Catepsinas , Colágeno , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Doença de Crohn/patologia , Elafina , Fibrose , Humanos , Obstrução Intestinal/patologia , Intestinos/patologia , Camundongos , Peptídeo Hidrolases , Ácidos Polimetacrílicos , Inibidores de Proteases , Proteoma , Receptor PAR-2 , Ácido Trinitrobenzenossulfônico/toxicidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco
14.
Immunopharmacol Immunotoxicol ; 44(6): 1044-1057, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35848944

RESUMO

BACKGROUND: Opioid prescription for inflammatory bowel disease (IBD)-related pain is on the rise. However, the use of strong opioids can result in severe complications, and even death, in IBD patients. This study aimed to define the role of fentanyl and morphine, two representative strong opioids, in the pathogenesis of dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis. METHOD: DSS and TNBS models were induced in C57BL/6J and Balb/c mice, respectively. Disease activity index (DAI), histopathology, enzyme-linked immunosorbent assay (ELISA), multiplex ELISA, and flow cytometry were performed to evaluate the effects of fentanyl and morphine. RESULT: Fentanyl exacerbated DSS- and TNBS-induced colitis, while morphine exhibited no significant immunomodulatory effect. Fentanyl and morphine had no obvious effects on the serum levels of adrenocorticotropic hormone (ACTH), glucocorticoid (GC), and prostaglandin E2 (PGE-2) in DSS and TNBS models. Fentanyl elevated the proportions of Th1 cells, µ-opioid receptor (MOR) + Th1 cells, and MOR + macrophages in the colonic mucosa of DSS-treated mice, and enhanced the proportions of Th1 cells, macrophages, MOR + Th1 cells, and MOR + macrophages in the colonic mucosa of TNBS-treated mice. We found that fentanyl upregulated the levels of inflammatory cytokines/chemokines in MOR + macrophages of the colonic lamina propria mononuclear cells (LPMCs) from DSS-treated mice, whereas it had no effect on the expression of most inflammatory cytokines/chemokines in MOR + macrophages in the colonic LPMCs from TNBS-treated mice. CONCLUSION: Our findings suggest that fentanyl exacerbates murine colitis via Th1 cell- and macrophage-mediated mechanisms, while morphine exhibits no significant immunomodulatory effect.


Assuntos
Fentanila , Morfina , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Fentanila/farmacologia , Camundongos Endogâmicos C57BL , Morfina/farmacologia
15.
Nutrients ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889931

RESUMO

A leaky gut is closely connected with systemic inflammation and psychiatric disorder. The rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induces gut inflammation and cognitive function in mice. Therefore, we selected Bifidobacterium longum NK219, Lactococcus lactis NK209, and Lactobacillus rhamnosus NK210, which induced claudin-1 expression in TNBS- or lipopolysaccharide (LPS)-stimulated Caco-2 cells, from the fecal bacteria collection of humans and investigated their effects on cognitive function and systemic inflammatory immune response in TNBS-treated mice. The intrarectal injection of TNBS increased cognitive impairment-like behaviors in the novel object recognition and Y-maze tests, TNF-α, IL-1ß, and IL-17 expression in the hippocampus and colon, and LPS level in the blood and feces, while the expression of hippocampal claudin-5 and colonic claudin-1 decreased. Oral administration of NK209, NK210, and NK219 singly or together decreased TNBS-impaired cognitive behaviors, TNF-α and IL-1ß expression, NF-κB+Iba1+ cell and LPS+Iba1+ cell numbers in the hippocampus, and LPS level in the blood and feces, whereas BDNF+NeuN+ cell and claudin-5+ cell numbers and IL-10 expression increased. Furthermore, they suppressed TNBS-induced colon shortening and colonic TNF-α and IL-1ß expression, while colonic IL-10 expression and mucin protein-2+ cell and claudin-1+ cell numbers expression increased. Of these, NK219 most strongly alleviated cognitive impairment and colitis. They additively alleviated cognitive impairment with colitis. Based on these findings, NK209, NK210, NK219, and their combinations may alleviate cognitive impairment with systemic inflammation by suppressing the absorption of gut bacterial products including LPS into the blood through the suppression of gut bacterial LPS production and alleviation of a leaky gut by increasing gut tight junction proteins and mucin-2 expression.


Assuntos
Disfunção Cognitiva , Colite , Probióticos , Animais , Células CACO-2 , Claudina-1 , Claudina-5 , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/terapia , Colite/induzido quimicamente , Colite/terapia , Humanos , Inflamação , Interleucina-10 , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Proteínas de Junções Íntimas , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
16.
J Ethnopharmacol ; 296: 115465, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35718051

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mume Fructus (MF) is a well-known traditional Chinese medicine used to treat chronic cough, prolonged diarrhea, and other inflammation-related diseases. We previously confirmed the anti-colitis effect of its ethanol extract on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced Crohn's disease (CD) rat model. However, the active ingredients and underlying mechanisms of MF remain unknown. AIM OF THE STUDY: To clarify the material basis and potential mechanism of the ethanol extract of MF (MFE) in alleviating CD and its complications, such as lung injury and intestinal obstruction. MATERIALS AND METHODS: MF was extracted with 80% ethanol aqueous solution and separated with 0, 40, and 100% ethanol aqueous solutions. MFE and its fractions were screened in a TNBS-induced CD rat model. For the bioactive fraction, the chemical composition was identified and quantified using ultrahigh-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight tandem mass spectrometry. Interleukin (IL)-1ß, IL-6, IL-17, transforming growth factor (TGF)-ß, and lipopolysaccharide (LPS) levels in the colon, lungs, and/or plasma were detected using enzyme-linked immunosorbent assays. The expression levels of zonula occludens-1 (ZO-1) and occludin in the colon were measured using immunohistochemical staining, and the intestinal microbiota and short-chain fatty acid (SCFA) levels were analyzed using 16S rRNA gene sequencing and gas chromatography/mass spectrometry. RESULTS: The 40% ethanol fraction of MF (MFE40), which mainly contained methyl citrate, ethyl citrate, and caffeoylquinic acid ethyl esters, was identified as the active fraction that could alleviate CD in rats. MFE40 could ameliorate inflammation and fibrosis in the colon and lung tissues by inhibiting the secretion of cytokines, such as IL-1ß, IL-6, IL-17, and TGF-ß, along with intestinal obstruction and lung injury in CD rats. The possible mechanisms of MFE40 were related to increased expression of ZO-1 and occludin in the colon, reduction in plasma LPS levels, and restoration of SCFAs via reduction in the relative abundance of Adlercreutzia, Clostridium_sensu_stricto_1, Erysipelatoclostridium, Faecalibaculum, norank_f_Erysipelotrichaceae, Phascolarctobacterium Coriobacteriaceae_UGG_002, and Allobaculum and increase in the relative abundance of Escherichia shigella, Christensenella, Acetivibrio_ethanolgignens, and Butyricicoccus. MFE40 had no significant influence on the inflammatory factors in healthy rats. CONCLUSIONS: Citrate esters and hydroxycinnamate esters are the main active constituents of MFE40. MFE40 exhibited a remission effect on CD rats and inhibited intestinal obstruction and lung injury via anti-inflammatory effects and regulation of the intestinal microbiota-gut-lung homeostasis.


Assuntos
Doença de Crohn , Obstrução Intestinal , Lesão Pulmonar , Animais , Citratos/metabolismo , Colo , Doença de Crohn/induzido quimicamente , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol/farmacologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Obstrução Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Ocludina/metabolismo , RNA Ribossômico 16S , Ratos , Ácido Trinitrobenzenossulfônico/toxicidade
17.
Nutrients ; 14(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35565934

RESUMO

Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1ß, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.


Assuntos
Bacillus amyloliquefaciens , Colite , Animais , Bacillus amyloliquefaciens/metabolismo , Camelus/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Leite/metabolismo , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
18.
Eur J Histochem ; 66(2)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603939

RESUMO

Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn's disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/patologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-8/efeitos adversos , Camundongos , Ácido Trinitrobenzenossulfônico/toxicidade , Tunicamicina/efeitos adversos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
19.
Bioengineered ; 13(4): 10144-10158, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35443853

RESUMO

Peptide YY (PYY) 3-36, the main circulatory form of PYY, plays important roles in gastrointestinal motility, secretion, and absorption. However, it is unknown whether PYY 3-36 has underlying functions in colitis. The Crohn's disease (CD)-like mouse model in which CD is induced by trinitrobenzene sulfonic acid (TNBS) was established and utilized to investigate this potential role for PYY 3-36. The results showed that the expression of colonic mucosal PYY and PYY receptors Y1, Y2, Y4 were significantly increased in mice with TNBS-induced colitis. In vitro, PYY 3-36 remarkably inhibited the production of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from lipopolysaccharide (LPS)-induced macrophages. In vivo, a high concentration of PYY 3-36 robustly decreased the weight loss and death rate and attenuated the pathological colon tissue damage observed in mice with TNBS-induced colitis. Further studies uncovered that PYY 3-36 treatment reduced the levels of colon myeloperoxidase (MPO) and both colonic and systemic TNF-α and IL-6 observed in murine colitis. Furthermore, flow cytometric analysis showed PYY 3-36 altered the proportion of Th1/Th2 splenocytes in the disease model of colitis. Collectively, these results suggest that PYY 3-36 may be a promising candidate for the improvement of colitis, reflected by the attenuation of colon inflammatory responses observed in experimental murine colitis.


Assuntos
Colite , Doença de Crohn , Animais , Colite/induzido quimicamente , Colite/patologia , Doença de Crohn/induzido quimicamente , Citocinas/metabolismo , Modelos Animais de Doenças , Interleucina-6 , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo YY/efeitos adversos , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/genética
20.
Immunopharmacol Immunotoxicol ; 44(3): 373-386, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35254187

RESUMO

Aim: Ulcerative colitis (UC) is a chronic inflammatory bowel disease that disturbs the colon mucosal lining and is characterized by oxido-nitrosative stress and the release of pro-inflammatory cytokines. Naringin (NG) belongs to a group of chemicals called bioflavonoids derived from grapefruit and related citrus species. NG has been widely used as folk medicine in many countries, due to its several health benefits.Method: This study examined the effect of NG on 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Forty-two male Wistar rats were divided into seven groups like Normal Control (NC), Ethanol Control (EC), Disease Control (DC), NG 20 (20 mg/kg, p.o.), NG 40 (40 mg/kg, p.o.), NG 80 (80 mg/kg, p.o.), and Dexamethasone (DEX) (2 mg/kg, p.o.). Colitis was induced in Wistar albino rats by administering TNBS intra-rectally (in 50% ethanol). The rats were then given 14 days of NG (20, 40, and 80 mg/kg) and DEX (2 mg/kg) treatment. Several behavioral, biochemical, molecular, and histological analyses were performed.Result: The treatment of rats with NG significantly increased the body weight (p < .05, p < .01), hematological parameters like hemoglobin (p < .05, p < .01, p < .001), red blood cells (p < .01, p < .001), and platelets count (p < .01, p < .001) and decreased in spleen weight (p < .01, p < .001), colon weight (p < .01, p < .001), colon weight to length ratio (p < .05, p < .01, p < .001), macroscopic score (p < .01, p < .001), adhesion score (p < .01, p < .001), diarrhea score (p < .05, p < .001), stool consistency (p < .01, p < .001), rectal bleeding score (p < .05, p < .01, p < .001), white blood cells count (p < .01, p < .001). NG significantly (p < .01, p < .001) increased colonic superoxide, glutathione, and catalase levels and decreased malondialdehyde and myeloperoxidase levels. It also significantly (p < .01, p < .001) decreased the biochemical parameters, proinflammatory cytokines and reduced the histological damage in the colon tissue caused by TNBS.Conclusion: Our results demonstrated that NG treatment attenuated pathologic changes of TNBS-induced colitis in rats through restoring colonic damage and reducing inflammatory response in the colon tissue. Thus, NG might be considered as an effective candidate for the treatment of UC patients.


Assuntos
Colite Ulcerativa , Colite , Animais , Antioxidantes/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite Ulcerativa/induzido quimicamente , Colo/patologia , Citocinas/farmacologia , Modelos Animais de Doenças , Etanol/farmacologia , Flavanonas , Humanos , Masculino , Peroxidase , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...